•  Ph.D. 1969 Thomas Jefferson University
•  M.D. 1970 Thomas Jefferson University
•  Postdoctoral, Columbia University, 1970
•  Postdoctoral, National Institutes of Health, 1972
•  Postdoctoral, Yale University, 1974

Research Interests

•  Cellular mechanisms for genomic instability
•  Molecular mechanisms of neurodegeneration
•  Cancer predisposition/DNA repair deficiency syndromes:
    xeroderma pigmentosum, Fanconi anemia, Cockayne syndrome

Current Research

Pre-Cancerous Genodermatoses

Damage to cellular DNA is among the most important causes of disease in man, with over 10,000 adducts in DNA believed to occur per cell per day due to normal metabolic events as well as a great many more due to environmental stress, exposure to mutagens, etc. Human cells respond to these events in at least three ways: 1) DNA repair, via a number of separate enzyme pathways, 2) stopping or slowing of replicative DNA synthesis, putatively to allow repair to occur, and 3) in cells damaged beyond certain thresholds, apoptosis. My laboratory has developed an extremely advanced computerized image analysis system which allows all of these events, and others, to be examined in cultured human cells simultaneously. This has been combined with very sophisticated cell culture techniques, a number of which are also unique to my laboratory, which allows us, for example to examine the function of certain DNA repair genes/proteins in repair deficient cell lines (e.g.,from patients with Xeroderma Pigmentosum or Fanconi Anemia) in culture following their introduction into these cells by electroporation. Using these methods we have also identified specific DNA repair defects in patients with other cellular degenerative disorders, in particular Amyotrophic Lateral Sclerosis and Alzheimer = s Disease. Recently the imaging probes have been further enhanced by the use of mathematical transforms, particularly Fourier transforms and fractal analysis, which have been applied to cultured cells as well as to biopsy specimens from humans and experimental animals. We have also developed methods to quantitate special configurations of DNA, such as triplex DNA, quadroplex DNA and Z-DNA, in cells undergoing these processes. This

combination of special methods is allowing us to address fundamental questions, particularly related to DNA repair, at the cellular, molecular, and clinical level.

Using this technology, we have recently shown that the cell cycle defect characteristic of the important inherited blood disease, Fanconi anemia, is not in the G 2 phase, as has been believed and studied for over two decades, but is actually in the S phase. We have also shown that this defect is at least as important as, and may be more important than, the DNA repair defect in this disease. Studies are in progress to further characterize this newly discovered defect as well as to search for similar deficiencies in other diseases.

Representative Publications :

Lambert, M.W., and Lambert W.C. DNA repair and chromatin structure in genetic diseases. Prog. Nucleic Acids Res. Mol. Biol. 64: 257-310, 1999.

Gagna, C.E., Kuo, H.-R., Rega, J., Heinze, J., and Lambert, W.C. Localization and quantification of Z-RNA in eye lens central zone epithelium . Scanning, J. Scanning Microsc ., 22 (2): 130-131, 2000.

Centurion, S.A., Kuo, H.-R., and Lambert, W.C. Damage-resistant DNA synthesis in Fanconi anemia lymphoblastoid cells treated with a DNA cross-linking agent. Exptl. Cell Res., 260:216-221, 2000.

Gagna, C.E., Kuo, H-R., Agostino, N., Rizzo, D., Isquith, I., Mathew, J., Mohammed, J., Hoo, S., and Lambert, W.C. Novel use of bovine zeta crystallin as a conformational DNA probe to characterize a phase transition zone and terminally differentiating fiber cells in the adult canine ocular lens. Arch. Histol. Cytol., 64(4): 379-391, 2001.

Gagna, C.E., Kuo, H-R., Florea, E., Shami, W., Taormina R., Vaswani, N., Gupta, M., Vijh, R., and Lambert, W.C. Comparison of apoptosis and terminal differentiation: The mammalian aging process. J. Histochem. Cytochem., 49(7):929-930, 2001.

Gagna, C.E., Kuo, H.-R., Rizzo, D., and Lambert, W.C. Indentification of Left-handed RNA in the

Deep Secondary Fibers of the Adult Ocular Lens Epithelial Cells. Scanning, J. Microsc., 23(3):213-

214, 2001.

Gagna, C.E. and Lambert, W.C. Left-handed Z-DNA. The Chemist, 79:25-28. 2002.

Gagna, C.E., and Lambert, W.C.: The Lingering Arrival of Left-handed Z-DNA Molecular Biology.

Medical Hypothesis, 60:418-423, 2003.

Sridharan, D., Brown, M., Lambert, W.C., McMahon, L., and Lambert, M.W. Nonerythroid a II

Spectrin is Required for Recruitment of FANCA and XPF to Nuclear Foci Induced by DNA

Interstrand Cross-links. J. Cell Science, 116:823-835, 2003.